ICRC TRR-160 Projects



A1 Coherent spin manipulation in quantum dot ensembles: Tailoring of spin dynamics and interactions

Principal investigators:

Associated: Dr. Philipp Grigoryev, Dr. Vasilii Belykh and PhD student Nataliya Kopteva

Summary:

The project focuses on tailoring the precession of spins in a quantum dot ensemble and exploring the interactions between different spin ensembles. The variability provided by a spin ensemble shall be exploited to generate and study spin mode distributions with complex dynamics. Furthermore, based on a microscopic understanding of the spin-spin interaction, we plan to optimize the interaction strength for obtaining spin states with robust entanglement. Based on these methods, tools for coherent manipulation of interacting and entangled spin states shall be worked out, for which also the potential of dynamic decoupling tools will be elaborated.

 

The project is supported from Russian side by the RFBR, project No. 15-52-12019. The project leader is Irina Yugova.

Publications:

  1. A. V. Mikhailov, V. V. Belykh, D. R. Yakovlev, P. S. Grigoryev, J. P. Reithmaier, M. Benyoucef and M. Bayer, Electron and hole spin relaxation in InP-based self-assembled quantum dots emitting at telecom wavelengths, Phys. Rev. B 98, 205306 (2018)
  2. E. Evers, V. V. Belykh, N. E. Kopteva, I. A. Yugova, A. Greilich, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, Decay and revival of electron spin polarization in an ensemble of (In,Ga)As quantum dots, Phys. Rev. B 98, 075309 (2018)
  3. P. A. Belov, E. S. Khramtsov, P. S. Grigoryev, and I. V. Ignatiev, Numerical Study of the Exciton-light Coupling in Quantum Wells, IEEE Xplore 8261746, 258 (18 January 2018)
  4. E. A. Zhukov, E. Kirstein, N. E. Kopteva, F. Heisterkamp, I. A. Yugova, V. L. Korenev, D. R. Yakovlev, A. Pawlis, M. Bayer & A. Greilich, Discretization of the total magnetic field by the nuclear spin bath in fluorine-doped ZnSe, Nature Communications, 9(1), 1941 (2018)
  5. I. A. Akimov, M. Salewski, I. V. Kalitukha, S. V. Poltavtsev, J. Debus, D. Kudlacik, V. F. Sapega, N. E. Kopteva, E. Kirstein, E. A. Zhukov, D. R. Yakovlev, G. Karczewski, M. Wiater, T. Wojtowicz, V. L. Korenev, Yu. G. Kusrayev, and M. Bayer, Direct measurement of the long-range p − d exchange coupling in a ferromagnet-semiconductor Co/CdMgTe/CdTe quantum well hybrid structure, Phys. Rev. B 96, 184412 (2017)
  6. P. S. Grigoryev, I. V. Ignatiev, V. G. Davydov, Yu. P. Efimov, S. A. Eliseev, V. A. Lovtcius, P. Yu. Shapochkin, and M. Bayer, Exciton-light coupling in (In,Ga)As/GaAs quantum wells in a longitudinal magnetic field, Phys. Rev. B 96, 155404 (2017)
  7. P. S. Grigoryev, A. S. Kurdiubov, M. S. Kuznetsova, Yu. P. Efimov, S. A. Eliseev, V. V. Petrov, V. A. Lovtcius, P. Yu. Shapochkin, and I. V. Ignatiev, Microscopic Modeling of Exciton Spectra in Asymmetric Quantum Wells, AIP Conference Proceedings 1748, 050006 (2016)
  8. P. S. Grigoryev, A. S. Kurdyubov, M. S. Kuznetsova, I. V. Ignatiev, Yu.P. Efimov, S. A. Eliseev, V. V. Petrov, V. A. Lovtcius, P. Yu. Shapochkin , Excitons in asymmetric quantum wells, Superlattices and Microstructures, 97, Pages 452–462 (September 2016)
  9. P. S. Grigoryev, O. A. Yugov, S. A. Eliseev, Yu. P. Efimov, V. A. Lovtcius, V. V. Petrov, V. F. Sapega and I. V. Ignatiev , Inversion of Zeeman splitting of exciton states in InGaAs quantum wells, Phys. Rev. B 93, 205425 (2016)
  10. D. K. Loginov, P. S. Grigoryev, Yu. P. Efimov, S. A. Eliseev, V. A. Lovtcius, V. V. Petrov, E. V. Ubyivovk, I. V. Ignatiev , Reduction of exciton mass by uniaxial stress in GaAs/AlGaAs quantum wells, physica status solidi (b), vol. 253, num. 8, pp.1537–1544 (August 2016) [arXiv:1505.02105]
  11. E S Khramtsov, P A Belov, P S Grigoryev, I V Ignatiev, S Yu Verbin and S L Yakovlev, Theoretical modeling of exciton-light coupling in quantum wells, Journal of Physics: Conference Series 690 012018 (2016)
  12. A. V. Trifonov, I. Ya. Gerlovin, I. V. Ignatiev, I. A. Yugova, R. V. Cherbunin, Yu. P. Efimov, S. A. Eliseev, V. V. Petrov, V. A. Lovtcius and A. V. Kavokin , Multiple-frequency quantum beats of quantum confined exciton states, Phys. Rev. B 92, 201301( R ) (2015)

A3 Transient four-wave mixing with spins

Principal investigators:

Associated: Dr. Marina Semina and Prof. Dr. Robert Suris (Ioffe Institute) as well as Dr. Irina Yugova (St. Petersburg State University) and PhD student Ivan Solov’ev

Summary:

The project focuses on photon echo phenomena involving semiconductor nanostructures (quantum wells and quantum dots) with localized resident carriers subject to external magnetic fields. The goal is to combine optical and spin excitations in an inhomogeneously broadened system to realize long-lived optical quantum memories. The interaction of resonant optical pulses with fundamental optical excitations such as excitons or trions with well-defined spin level structure will be explored. Stimulated and spontaneous photon echoes will be analyzed using transient four-wave mixing with heterodyne detection.

 

The project is supported from Russian side by the RFBR, project No. 15-52-12016. The project leader is Sergey Poltavtsev.

Publications:

  1. I A Solovev, Yu V Kapitonov, B V Stroganov, Yu P Efimov, S A Eliseev and S V Poltavtsev, Separation of inhomogeneous and homogeneous broadening manifestations in InGaAs/GaAs quantum wells by time-resolved four-wave mixing, J. Phys.: Conf. Ser. 1124, 051042 (2018)
  2. S. V. Poltavtsev, I. A. Solovev, I. A. Akimov, V. V. Chaldyshev, W. V. Lundin, A. V. Sakharov, A. F. Tsatsulnikov, D. R. Yakovlev and M. Bayer, Long coherent dynamics of localized excitons in (In,Ga)N/GaN quantum wells, Phys. Rev. B 98, 195315 (2018)
  3. S. V. Poltavtsev, I. A. Yugova, I. A. Akimov, D. R. Yakovlev, and M. Bayer, Photon Echo from Localized Excitons in Semiconductor Nanostructures, Physics of the Solid State, 2018, Vol. 60, No. 8, pp. 1635 (2018)
    [Полтавцев С.В., Югова И.А., Акимов И.А., Яковлев Д.Р., Bayer M. Фотонное эхо на локализованных экситонах в полупроводниковых наноструктурахФизика твердого тела, 2018, том 60, вып. 8]
  4. I. A. Solovev, S. V. Poltavtsev, Yu. V. Kapitonov, I. A. Akimov, S. Sadofev, J. Puls, D. R. Yakovlev, and M. Bayer, Coherent dynamics of localized excitons and trions in ZnO/(Zn,Mg)O quantum wells studied by photon echoes, Phys. Rev. B 97, 245406 (2018)
  5. Ilya A. Akimov, Sergey V. Poltavtsev, Matthias Salewski, Irina A. Yugova, Grzegorz Karczewski, Maciej Wiater, Tomasz Wojtowicz, Matthias Reichelt, Torsten Meier, Dmitri R. Yakovlev, Manfred Bayer, Coherent optical spectroscopy of charged exciton complexes in semiconductor nanostructures, Proc. SPIE 10530, Ultrafast Phenomena and Nanophotonics XXII, 105300G (22 February 2018)
  6. M. Salewski, S. V. Poltavtsev, I. A. Yugova, G. Karczewski, M. Wiater, T. Wojtowicz, D. R. Yakovlev, I. A. Akimov, T. Meier, and M. Bayer, High-Resolution Two-Dimensional Optical Spectroscopy of Electron Spins, Phys. Rev. X 7, 031030 (14 August 2017)
  7. S. V. Poltavtsev, A. N. Kosarev, I. A. Akimov, D. R. Yakovlev, S. Sadofev, J. Puls, S. P. Hoffmann, M. Albert, C. Meier, T. Meier, and M. Bayer, Time-resolved photon echoes from donor-bound excitons in ZnO epitaxial layers, Phys. Rev. B 96, 035203 (2017)
  8. S. V. Poltavtsev, M. Reichelt, I. A. Akimov, G. Karczewski, M. Wiater, T. Wojtowicz, D. R. Yakovlev, T. Meier, and M. Bayer, Damping of Rabi oscillations in intensity-dependent photon echoes from exciton complexes in a CdTe/(Cd,Mg)Te single quantum well, Phys. Rev. B 96, 075306 (2017)
  9. M. Salewski, S. V. Poltavtsev, Yu. V. Kapitonov, J. Vondran, D. R. Yakovlev, C. Schneider, M. Kamp, S. Höfling, R. Oulton, I. A. Akimov, A. V. Kavokin, and M. Bayer , Photon echoes from (In,Ga)As quantum dots embedded in a Tamm-plasmon microcavity, Phys. Rev. B 95, 035312 (2017)
  10. S. V. Poltavtsev, M. Salewski, Yu. V. Kapitonov, I. A. Yugova, I. A. Akimov, C. Schneider, M. Kamp, S. Höfling, D. R. Yakovlev, A. V. Kavokin, and M. Bayer , Photon echo transients from an inhomogeneous ensemble of semiconductor quantum dots, Phys. Rev. B 93, 121304( R ) (10 March 2016)

A5 Spin noise through bath coupling

Principal investigators:

Associated: Prof. Dr. Evgueni Alexandrov (Ioffe Institute) and Dr. Ivan Ryzhov (St. Petersburg State University)

Summary:

This project is aimed to study the influence of external perturbations on spin systems in thermal equilibrium by the spin noise methodology. We want to provide comparative studies of unperturbed vs. perturbed spin systems, for which the perturbations are provided either by optical illumination or by radio-frequency fields influencing the nuclear surrounding of localized carriers. Furthermore, we plan to develop cavity-enhanced spin noise spectroscopy and apply it to different spin systems with the goal to detect magnetic resonances and study the dynamics of spins through higher order correlations.

 

The project is supported from Russian side by the RFBR, project No. 15-52-12013. The project leader is Valerii Zapasskii.

Publications:

  1. G. G. Kozlov, I. I. Ryzhov, A. Tzimis, Z. Hatzopoulos, P. G. Savvidis, A. V. Kavokin, M. Bayer and V. S. Zapasskii, Hidden polarization of unpolarized light, Phys. Rev. A 98, 043810 (2018)
  2. M. Yu. Petrov, A. N. Kamenskii, V. S. Zapasskii, M. Bayer, and A. Greilich, Increased sensitivity of spin noise spectroscopy using homodyne detection in n-doped GaAs, Phys. Rev. B 97, 125202 (2018)
  3. V S Zapasskii and G G Kozlov , Evolution in the optical detection of magnetization, Uspekhi Fizicheskikh Nauk 60 628 (2017)
    В. С. Запасский, Г. Г. Козлов, Эволюция оптических методов детектирования намагниченности УФН, 187:6, 675–686 (2017)
  4. G. G. Kozlov, I. I. Ryzhov, and V. S. Zapasskii, Light scattering in a medium with fluctuating gyrotropy: Application to spin-noise spectroscopy, Phys. Rev. A 95, 043810 (2017)
  5. I. I. Ryzhov, M. M. Glazov, A. V. Kavokin, G. G. Kozlov, M. Aßmann, P. Tsotsis, Z. Hatzopoulos, P. G. Savvidis, M. Bayer, and V. S. Zapasskii , Spin noise of a polariton laser, Phys. Rev. B 93, 241307( R ) (2016)
  6. Ivan I. Ryzhov, Gleb G. Kozlov, Dmitrii S. Smirnov, Mikhail M. Glazov, Yurii P. Efimov, Sergei A. Eliseev, Viacheslav A. Lovtcius, Vladimir V. Petrov, Kirill V. Kavokin, Alexey V. Kavokin and Valerii S. Zapasskii, Spin noise explores local magnetic fields in a semiconductor, Sci Rep. 2016; 6: 21062 (2016)
  7. I. I. Ryzhov, S. V. Poltavtsev, K. V. Kavokin, M. M. Glazov, G. G. Kozlov, M. Vladimirova, D. Scalbert, S. Cronenberger, A. V. Kavokin, A. Lemaître, J. Bloch, and V. S. Zapasskii , Measurements of nuclear spin dynamics by spin-noise spectroscopy, Appl. Phys. Lett. 106, 242405 (2015)
  8. I. I. Ryzhov, S. V. Poltavtsev, G. G. Kozlov, A. V. Kavokin, P. V. Lagoudakis and V. S. Zapasskii , Spin noise amplification and giant noise in optical microcavity, Jour. Appl. Phys. 117, 224305 (2015)

A6 Understanding the nuclear spin bath impact on spin coherence

Principal investigators:

Associated: Dr. Roman Cherbunin, Dr. Maria Kusnetzova, Dr. Mikhail Petrov and Prof. Dr. Sergey Verbin (St. Petersburg State University) as well as Dr. Vladimir Kalevich (Ioffe Institute)

Summary:

This project investigates nuclear spin fluctuations, effects of quadrupole splitting of nuclear spin states, spin-lattice relaxation and decoherence in the nuclear spin system of semiconductors. For this purpose, the nuclear spin polarization will be enhanced by dynamic polarization via spin-oriented electrons. Optically detected magnetic resonance will be used to determine the evolution of the nuclear spins in magnetic fields and their back-action on the central electron spin of a localized charge carrier. The role of quadrupole splittings of nuclear spin states, which may considerably affect the nuclear-nuclear and electron-nuclear spin dynamics and carrier spin coherence, will also be studied.

 

The project is supported from Russian side by the RFBR, project No. 15-52-12020. The project leader is Kirill Kavokin.

Publications:

  1. M. Kotur, R. I. Dzhioev, M. Vladimirova, R. V. Cherbunin, P. S. Sokolov, D. R. Yakovlev, M. Bayer, D. Suter, and K. V. Kavokin, Spin-lattice relaxation of optically polarized nuclei in p-type GaAs, Phys. Rev. B 97, 165206 (2018)
  2. V. V. Belykh, K. V. Kavokin, D. R. Yakovlev, and M. Bayer, Electron charge and spin delocalization revealed in the optically probed longitudinal and transverse spin dynamics in n-GaAs, Phys. Rev. B 96, 241201 (2017)
  3. P. S. Sokolov, M. Yu. Petrov, K. V. Kavokin, A. S. Kurdyubov, M. S. Kuznetsova, R. V. Cherbunin, S. Yu. Verbin, N. K. Poletaev, D. R. Yakovlev, D. Suter, and M. Bayer, Nuclear spin cooling by helicity-alternated optical pumping at weak magnetic fields in n-GaAs, Phys. Rev. B 96, 205205 (2017)
  4. R. W. Mocek, V. L. Korenev, M. Bayer, M. Kotur, R. I. Dzhioev, D. O. Tolmachev, G. Cascio, K. V. Kavokin, and D. Suter, High-efficiency optical pumping of nuclear polarization in a GaAs quantum well, Phys. Rev. B 96, 201303 (2017)
  5. M. S. Kuznetsova, Electron–Nuclear Spin Dynamics in Semiconductor QDs, Appl. Magn. Reson. Vol. 48, No. 4, 1-21 (July 2017)
  6. M. S. Kuznetsova, R. V. Cherbunin, I. Ya. Gerlovin, I. V. Ignatiev, S. Yu. Verbin, D. R. Yakovlev, D. Reuter, A. D. Wieck, and M. Bayer, Spin dynamics of quadrupole nuclei in InGaAs quantum dots, Phys. Rev. B 95, 155312 (2017)
  7. P. S. Sokolov, M. Yu. Petrov, T. Mehrtens, K. Müller-Caspary, A. Rosenauer, D. Reuter, and A. D. Wieck , Reconstruction of nuclear quadrupole interaction in (In,Ga)As/GaAs quantum dots observed by transmission electron microscopy, Phys. Rev. B 93, 045301 (2016)

B7 Spin-dependent polariton condensates

Principal investigators:

Associated: Dr. Mikhail Petrov, Dr. Artur Trifonov and PhD student Andrey Kurdyubov (St. Petersburg State University)

Summary:

This project is focused on using the spin-anisotropic polariton-polariton interaction to create spin-sensitive all-optical circuit-like switches or other logical elements. Thus, we will utilize spin as an additional degree of freedom in optical information processing. The concept of “polariton neurons” as proposed by us as building blocks of polariton integrated circuits will be checked experimentally. We will demonstrate basic polariton logic elements, thereby paving the way towards spin-sensitive optical circuits that are also inscribed optically and can therefore be created and modified on demand.

 

The project is supported from Russian side by the RFBR, project No. 15-52-12018. The project leader is Alexey Kavokin.

Publications:

  1. G. Li, A.S. Sheremet, R. Ge, T.C.H. Liew, and A.V. Kavokin, Design for a Nanoscale Single-Photon Spin Splitter for Modes with Orbital Angular Momentum, Phys. Rev. Lett. 121, 053901 (2018)
  2. V. A. Lukoshkin, V. K. Kalevich, M. M. Afanasiev, K. V. Kavokin, Z. Hatzopoulos, P. G. Savvidis, E. S. Sedov, and A. V. Kavokin, Persistent circular currents of exciton-polaritons in cylindrical pillar microcavities, Phys. Rev. B 97, 195149 (2018)
  3. A.V. Trifonov, Yu. P. Efimov, S. A. Eliseev, V. A. Lovtcius, P. Yu. Shapochkin, and I. V. Ignatiev, Dynamics of Excitonic Polaritons in Semiconductor Heterostructures with Quantum Wells, IEEE Xplore 8262184, 2566 (18 January 2018)
  4. Petros Skopelitis, Evgenia D. Cherotchenko, Alexey V. Kavokin, and Anna Posazhennikova, Interplay of Phonon and Exciton-Mediated Superconductivity in Hybrid Semiconductor-Superconductor Structures, Phys. Rev. Lett. 120, 107001 (2018)
  5. Daniel Schmidt, Bernd Berger, Manfred Bayer, Christian Schneider, Martin Kamp, Sven Höfling, Evgeny Sedov, Alexey Kavokin, and Marc Aßmann, Dynamics of the optical spin Hall effect, Phys. Rev. B 96, 075309 (2017)
  6. Д. А. Зайцев, А. В. Кавокин, Р. П. Сейсян, Рассеяние экситонного поляритона на примесных центрах в GaAs, ЖЭТФ, 2017, том 151, вып. 4, стр. 767–775
  7. A. V. Nalitov, T. C. H. Liew, A. V. Kavokin, B. L. Altshuler, and Y. G. Rubo, Spontaneous Polariton Currents in Periodic Lateral Chains, Phys. Rev. Lett. 119, 067406 (11 August 2017)
  8. A. V. Trifonov, N. E. Kopteva, M. V. Durnev, I. Ya. Gerlovin, R. V. Cherbunin, A. Tzimis, S. I. Tsintzos, Z. Hatzopoulos, P. G. Savvidis, and A. V. Kavokin, Inverse-phase Rabi oscillations in semiconductor microcavities, Phys. Rev. B 95, 155304 (2017)
  9. E. S. Khramtsov, P. A. Belov, P. S. Grigoryev, I. V. Ignatiev, S. Yu. Verbin, Yu. P. Efimov, S. A. Eliseev, V. A. Lovtcius, V. V. Petrov and S. L. Yakovlev , Radiative decay rate of excitons in square quantum wells: Microscopic modeling and experiment, J. Appl. Phys. 119, 184301 (May 2016)
  10. V. A. Lukoshkin, V. K. Kalevich, M. M. Afanasiev, K. V. Kavokin, S. I. Tsintzos, P. G. Savvidis, Z. Hatzopoulos, A. V. Kavokin, Controlled switching between quantum states in the exciton–polariton condensate, JETP Letters, 103:5, 313-315 (2016)
    В. А. Лукошкин, В. К. Калевич, М. М. Афанасьев, К. В. Кавокин, С. И. Цинцос, П. Г. Саввидис, З. Хацопулос и А. В. Кавокин Управляемое переключение между квантовыми состояниями в экситон-поляритонном конденсате Письма в ЖЭТФ, том 103, вып. 5, с. 355 – 358 (2016)
  11. Igor Yu. Chestnov, Sevak S. Demirchyan, Alexander P. Alodjants, Yuri G. Rubo, and Alexey V. Kavokin , Permanent Rabi oscillations in coupled exciton-photon systems with PT-symmetry, Sci. Rep. 6, 19551 (2016)
  12. S. S. Demirchyan, I. Yu. Chestnov, S. M. Arakelian, A. P. Alodjants, A. V. Kavokin, On the mechanism of the maintenance of Rabi oscillations in the system of exciton polaritons in a microcavity, JETP Letters 103, 1, 51–56 (2016)
    С. С. Демирчян, И. Ю. Честнов, С. М. Аракелян, А. П. Алоджанц, А. В. Кавокин О механизме поддержания осцилляций Раби в системе экситонных поляритонов в микрорезонаторе Письма в ЖЭТФ 103, 56 (2016)
  13. R. V. Cherbunin, M. Vladimirova, K. V. Kavokin, A. V. Mikhailov, N. E. Kopteva, P. G. Lagoudakis and A. V. Kavokin , Significant photoinduced Kerr rotation achieved in semiconductor microcavities, Phys. Rev. B 91, 205308 (18 May 2015)
  14. A. V. Trifonov, S. N. Korotan, A. S. Kurdyubov, I. Ya. Gerlovin, I. V. Ignatiev, Yu. P. Efimov, S. A. Eliseev, V. V. Petrov, Yu. K. Dolgikh, V. V. Ovsyankin and A. V. Kavokin , Nontrivial relaxation dynamics of excitons in high-quality InGaAs/GaAs quantum wells, Phys. Rev. B 91, 115307 (2015)

More information about ICRC TRR-160 projects see in site TU Dortmund.
ICRC TRR-160 Projects